

การนำเสนองานวิจัย "Empirical Asset Pricing using xAI"

โดย ผศ. ดร.สัมพันธ์ เนตยานันท์ มหาวิทยาลัยนเรศวร ดร.ศิริยศ จุฑานนท์ ตลาดหลักทรัพย์แห่งประเทศไทย 20 กรกฎาคม 2566

Asset Pricing Model: Key Concepts and Assumptions

Efficient Market Hypothesis (EMH)

- Reflect all available information
- Investors are rational
- Not possible to consistently outperform the market

• Considers risk factors such as size, value, momentum, profitability, etc.

Risk and Expected Return

• Investors typically demand a higher return for taking on greater risks

Capital Asset Pricing Model (CAPM)

- The only risk is systematic risk measured by beta
- The rest is the alpha which refers to fund manager performance

Behavioral Finance

- Investors may not always behave rationally with their biases and emotions
- Incorporate behavioral factors such as PEAD,
 VIX index, and survey may improve model

Artificial intelligence (AI) can play a significant role in asset pricing models

Analyze news articles, social media posts, and other textual data to gauge market sentiment

- Enable the execution of trades at high speeds based on predefined rules and market signals
- Capitalizing on short-term pricing anomalies and improving overall trading performance

Some of the key challenges include:

• Unlike traditional computer programs that follow a set of predefined rules to produce an output

- Machine learning algorithms are designed to learn from data and find patterns on their own
- The decision-making process of a machine learning model is not always transparent
 - Researchers are working to develop methods to make machine learning algorithms more transparent and interpretable
 - Clearly communicate how the AI system arrived at a particular recommendation or decision, enabling users to comprehend and verify the reasoning
 - Explainable AI (xAI): a set of techniques and methods used in artificial intelligence and machine learning that enable users to understand how a model works and why it arrived at a particular decision or prediction
 - Users can gain insights into how an AI system arrived at a particular conclusion, and can potentially identify errors or biases

xAI techniques that can be used including:

Decision Trees:

- Feature Importance Analysis
- Partial Dependence Plots

Rule-Based Systems:

Main Objective	Research Paper	Predicted Variable	Machine Learning	×AI
Economics	"An interpretable machine learning work flow with an application to economic forecasting" by Buckmann, Joseph, and Robertson (2021)	• Forecast US unemployment one year ahead in a monthly dataset	 Random Forests Neural Networks Compare to conventional models. 	 Using SHapley Additive exPlanation (SHAP)
forecasting	"Interpretable deep learning LSTM model for intelligent economic decision-making" by Park and Yang (2022)	 Predict economic growth rates and crises for major G20 countries 	 Deep learning model based on the Long Short-term Memory (LSTM) network 	 Using SHapley Additive exPlanation (SHAP)
Stock price	"Explainable stock prices prediction from financial news articles using sentiment analysis" by Gite et al. (2021)	 Predict next-day stock price in the National Stock Exchange (NSE) with Indian finance news headlines 	 Suggests a technique involving LSTM 	 Using Local interpretable model- agnostic explanations (LIME)
prediction	"Explainable AI for Financial Forecasting" Carta, Podda, Recupero, and Stanciu (2022)	 Predict the next- day returns for stocks in S&P500, CAC, FTSE 	 Mean Decrease Impurity (MDI) Random forests 	 Using Local interpretable model- agnostic explanations (LIME)

Main Objective	Research Paper		Predicted Variable		Machine Learning		×AI
Trading strategy	"The best way to select features? Comparing MDA, LIME and SHAP" Man and Chan (2022)	•	Predict whether each trade of the strategy will be profitable	•	Random forest	•	Comparing MDA, LIME and SHAP
Forecast stock market crisis	"Explainable AI (XAI) models applied to planning in financial markets" by Benhamou Ohana, Saltiel, and Guez (2021)	•	Identification of the most important variables planning stock market crises during March 2020 equity meltdown	•	Gradient boosting decision tree (GBDT)	•	Using SHapley Additive exPlanation (SHAP)
	"Machine Learning Algorithms for Financial Asset Price Forecasting" by Ndikum (2020)	•	Explores financial asset price forecasting on U.S equities data	•	High performance computing (HPC) infrastructures vs. the traditional CAPM	•	None
Asset pricing model	"Empirical Asset Pricing via Machine Learning" by Gu, Kelly, and Xiu (2020)	•	Comparative analysis of machine learning methods for measuring asset risk premia Forecast returns using various predictive features at the firm, industry, and macro levels	•	Artificial neural networks (ANN) Boosted regression trees Random forests	•	None

- Research Question
 - How each factor explains portfolio returns in a machine learning setting by using xAI
- Contribution
 - One of the first to employ the xAI to an expansive list of financial anomalies to illustrate factor importance

 $E(LS_{i,t}) = f_{ANN}(F_t)$

- The left-hand side indicates the zero-cost long-short portfolio
- F_t are constructed from the three-by-five portfolios conditioned on the size
- The model structure is similar to Gu, Kelly, and Xiu (2020)
- Right-hand side variables act like the macroeconomic variables in Gu, Kelly, and Xiu (2020)
- The model is also similar to Gu, Kelly, and Xiu (2021): Includes common factors to explain individual and portfolio returns
- Includes the excess market returns
- There are 188 factors/features in total

- We use the data from 1991 until 2021 to consider all anomalies for factor constructions
- Global-q.org
 - 41 momentum
 - 32 value-versus-growth
 - 29 investment
 - 46 profitability
 - 30 intangible
 - 10 friction anomalies
- 69,936 rows of data

M	om	en	tum	

Zip folders that	contain all 41	momentum anomalies for	<u>r a given frequency</u>	
1-way sorts: 2-way sorts:	Daily Daily	Weekly (calendar) Weekly (calendar)	Weekly (Wednesday-to-Wednesday) Weekly (Wednesday-to-Wednesday)	Monthly Monthly
Explanation of C	CSV filename	s for individual momentu	m anomalies	
1. Abr1 ("abr_1" 2. Abr6 ("abr_6" 3. Abr12 ("abr_1 4. Cim1 ("cim_1 5. Cim6 ("cim_6 6. Cim12 ("cim_7 7. Cm1 ("cm_1" 8. Cm12 ("cm_1" 9. dEf1 ("def_1" 10. dEf6 ("def_6 11. dEf12 ("def_1" 13. Ilr1 ("ilr_1") 14. Ilr6 ("ilr_6") 15. Ilr12 ("ilr_12 16. Im1 ("im_1" 17. Im6 ("im_6")), cumulative (), cumulative (2"), cumulat (2"), customer (2"), customer (12"), customer (12")	e abnormal returns around e abnormal returns around ive abnormal returns around industries momentum, 1-r industries momentum, 6-r er industries momentum, nomentum, 1-month holdin r momentum, 12-month holdin r momentum, 12-month holdin analyst earnings forecasts n analyst earnings forecasts in analyst earnings forecasts ad-lag effect in earnings si d-lag effect in prior return d-lag effect in prior return d-lag effect in prior return lead-lag effect in prior return lead-lag effect in prior return dentum, 1-month holdin omentum, 6-month holdin	earnings announcement dates, 1-month hole earnings announcement dates, 6-month hole nd earnings announcement dates, 12-month month holding period; 12-month holding period; 12-month holding period; olding period; s, 1-month holding period; ts, 6-month holding period; uprises, 12-month holding period; ns, 1-month holding period; ns, 6-month holding period; ns, 6-month holding period; ns, 6-month holding period; uprises, 12-month holding period; ns, 6-month holding period; g period; g period; g period;	ding period; ding period; holding period;

Source: https://global-q.org/testingportfolios.html

Data

Anomaly	m	σ	SR	t-stat				
abr_1	0.648	1.893	0.342	6.587				
abr_6	0.333	1.339	0.249	4.789				
abr_12	0.248	0.997	0.249	4.801				
aci	0.151	1.903	0.079	1.526				
adm	0.192	4.391	0.044	0.842				
almq_1	0.389	3.533	0.110	2.122				
almq_6	0.472	3.273	0.144	2.780				
almq_12	0.344	3.147	0.109	2.104				
ato	0.536	2.907	0.184	3.549				
atoq_1	0.803	2.594	0.309	5.961				
atoq_6	0.783	2.595	0.302	5.814				
atoq_12	0.693	2.610	0.266	5.117				
beta_1	0.330	5.988	0.055	1.061				
bm	0.291	3.833	0.076	1.462				
bmj	0.321	4.335	0.074	1.425				
bmq 12	0.268	4.274	0.063	1.208				

Table 1 Statistics of Eactors

- Using artificial neural networks (ANN), similar to Gu, Kelly, and Xiu (2020)
- Geometric pyramid rule from Master (1993)
- 188 -> 53 -> 15 -> 4 -> 1
- Fully connected
- Sigmoid activation function
- 80% as a training sample 20% as a test sample
- 64 batches and 200 epochs
- Loss function: MSE (0.0023)
- Google Colab and TensorFlows using Python language

- Explainable AI (xAI) / Interpretable Machine Learning
- Lundberg and Lee (2017)
- Use to rank feature importance
- The idea is based on Shapley value from game theory
- Locally importance for each observation, can extend to global importance
- It can take up to nine hours for the calculation of SHAP

• Similar to Local Interpretable Model-agnostic Explanations (LIME) by Ribeiro, Singh, and Guestrin (2016)

• Similar to Local Interpretable Model-agnostic Explanations (LIME) by Ribeiro, Singh, and Guestrin (2016)

• Similar to Local Interpretable Model-agnostic Explanations (LIME) by Ribeiro, Singh, and Guestrin (2016)

• "Shapley Value" in cooperative game theory

• "Shapley Value" in cooperative game theory

- Kernel SHAP
- Tree SHAP
- Deep SHAP

C:\Users\set-admin\Desktop\SHAP\01 Apr 2023\XAI_3.py			8	₽⁄		٩	с		4 4	=	
	temp.py × XAI_3.py × XAI_SET.py ×		Name			Туре		Size	Value		
83 84 85 86 87 88 90 91 91 92 93 94	<pre>3 optimizer=optimizer, 4 metrics=['mae', 'mse'])</pre>	d	ataset		Data	Frame		(11656, 189)	Column names: bm, bmj, bmq_12, cp, cpq_1, cpq_12, cpq_6, dp, dur, ebp,		
	5 return model	d	f2		Data	Frame		(60910, 191)	Column names: year, month, bm, bmj, bmq_12, cp, cpq_1, cpq_12, cpq_6,		
	7 model = build_model() 8	te	est_datas	et	Data	Frame		(2331, 188)	Column names: bm, bmj, bmq_12, cp, cpq_1, cpq_12, cpq_6, dp, dur, ebp,		
	9 model.summary()	te	est_x		Data	Frame		(2331, 188)	Column names: bm, bmj, bmq_12, cp, cpq_1,		
	<pre>bistory = model.fit(train_x1, train_y1, batch_size=64,</pre>							Help Variable Exp	lorer Plots Files		
	3 epochs=200, 4 verbose=0,	Console 1/A ×								≡	
9	<pre>5 validation_data=(test_x1, test_y1),callbacks=[tfdocs.modeling.EpochDots() 6 7</pre>	Total params: 10,896 Trainable params: 10,896								ñ	
9	#Find MSE Non-t					trainable params: 0					
18	<pre>predict_y = model.predict(test_x1) predict y = np.reshape(predict y,len(predict y))</pre>										

Overall Periods

Subperiods

- Employ the SHAP method to explain returns
- Rank feature/factor importance
- Find that the top factors explaining returns in overall and subperiod periods differ
- Individual or institutional investors can use SHAP to explain the machine learning model
- Stock exchanges can explore the SHAP explanation and use it to explain how factors move asset returns in the market

SET | Make it Work for Everyone

www.set.or.th